Application Development
with
BRL-CAD

ILLee A. Butler

John Anderson

WARNING

Code Intensive Presentation

For Code Warriors Only!

non-programmers will need atropine, caffeine, and electro-shock therapy

(run, do not walk, to the nearest exit)

Overview

e Header files
e Shooting Rays

e Ray-Tracing User Interface Framework
(RTUIF)

Geometry Forms
Creating Geometry
Reading Geometry
Modifying Geometry

Header Files

* The Big-6
Header

Library

bu.h

libbu

bn.h

libbn

raytrace.h

librt

rtgeom.h

librt / libwdb

wdb.h

libwdb

vmath.h

(data types)

Prototype Application:
rtexample.c

Opens a database

Retrieves geometry

Prepares geometry for raytrace

Performs raytrace

See source tree: rt/rtexample.c

Necessary Headers

#include "conf.h” /* compilation macros */
#include <stdio.h>

#include <math.h>

#include "machine.h” /* machine specific definitions */
#include "vmath.h” /* vector math macros */
#include "raytrace.h” /* librt interface definitions */

e The “conf.h” and “machine.h™ are ubiquitous in
almost all BRLCAD apps
e The “raytrace.h” 1s present for geometry programs

— Includes some additional headers

— Contains most ray-tracing data structure definitions

Opening the Database

static struct rt_i *rtip; /* librt Instance structure */

/* rt_dirbuild() performs many functions for us */

rtip = rt_dirbuild(argv[1], buf, sizeof(but));

if(rtip == RTI_NULL) {
tprintf(stderr, "rtexample: rt_dirbuild failure\n");
exit(2);

Opens database file

Builds a “directory” of objects in the
database

Allows us to retrieve individual objects

Reading Geometry

1f(rt_gettree(rtip, argv[2]) <0)
fprintf(stderr,"rt_gettree(%s) FAILED\n", argv([2]);

e Retrieves tree top specified by argv[2] into
a “‘working set” used by librt

Preparing Geometry for
Raytracing

rt_prep_parallel(rtip,1);

* Pre-computes useful terms for each
primitive
— Eg: triangle normals, function roots, trig terms

* Builds “space partition” tree to accelerate
ra-trace

Application Struct & Shot

struct application ap;

ap.a_rt_1 = rtip;

VSET(ap.a_ray.r_pt, 0, 0, 10000);

VSET(ap.a_ray.r_dir, 0, 0, -1);

ap.a_hit = hit; /* where to go on a hit */
ap.a_miss = miss; /* where to go on a miss */

(void)rt_shootray(&ap); /* do 1t */

* The application struct contains information
about the ray that is to be computed and
what should be done with the results

Application Struct

eExcerpts of application struct
from raytrace.h:

struct application {

struct xray a_ray; /* Actual ray to be shot */
int (**a_hit)(struct application *,
struct partition *,
struct seg *);
int (*a_miss) (struct application *);
int a_onehit; /* flag to stop on first hit */

structrt_1 *a_rt_1i; /* this librt instance */

Miss Routine

miss(register struct application *ap)

{
bu_log("missed\n");

return(0); /* Value returned by rt_shootray() */

e Called when ray does not hit any geometry

Hit Routine

hit(register struct application *ap, /* see raytrace.h */

{

struct partition *PartHeadp) /* see raytrace.h */

register struct partition *pp;
register struct hit *hitp;
point_t pt;
for(pp=PartHeadp->pt_forw;
pp != PartHeadp;
pp = pp->pt_forw) {
hitp = pp->pt_inhit;
VJOINI(pt, ap->a_ray.r_pt, hitp->hit_dist,
VPRINT(“Hit Point”, pt);
¥

return 1; /* value returned by rt_shootray();

ap->a_ray.r_dir);

Hit Routine Breakdown

hit(register struct application *ap,

struct partition *PartHeadp)

{
register struct partition *pp;
register struct hit *hitp;
point_t pt;

e Partition Structure contains information
about intervals of the ray which pass
through geometry

e Hit structure contains information about an
individual boundary/ray intersection

Partition Structure

struct partition {
long pt_magic;
struct partition *pt_forw;
struct partition *pt_back;
struct seg *pt_inseg;
struct hit *pt_inhit;
struct seg *pt_outseg;
struct hit *pt_outhit;
struct region *pt_regionp;
char pt_inflip;
char pt_outflip;
struct region **pt_overlap_reg;

struct bu_ptbl pt_seglist;
s

/* sanity check */
/* forwards link */
/* backwards link */
/* IN seg ptr (gives stp) */
/* IN hit pointer */
/* OUT seg pointer */
/* OUT hit ptr */
/* ptr to containing region */
/* flip inhit->hit_normal */
/* flip outhit->hit_normal */
/* NULL-terminated array of
* overlapping regions.
* NULL if no overlap.
*/
/* all segs in this partition */

 From h/raytrace.h

Hit Structure

struct hit {
long
fastf_t
point_t
vect_t
vect_t
genptr_t
int
struct xray

¥

hit_magic;
hit_dist;
hit_point;
hit_normal;
hit_vpriv;
hit_private;
hit_surfno;
*hit_rayp;

/* dist from r_pt to hit_point */

/* Intersection point */

/* Surface Normal at hit_point */

/* PRIVATE vector for xxx_*() */

/* PRIVATE handle for xxx_shot() */
/* solid-specific surface indicator */
/* pointer to defining ray */

eFrom raytrace.h
*Holds information about single ray/surface

Intersection.
*Note: Only hit_dist filled 1n by librt.

Hit Routine (Again)

hit(register struct application *ap, /* see raytrace.h */
struct partition *PartHeadp) /* see raytrace.h */
{
register struct partition *pp;
register struct hit *hitp;
point_t pt;
for(pp=PartHeadp->pt_forw;
pp != PartHeadp;
pp = pp->pt_forw) {
hitp = pp->pt_inhit;
VJOINI(pt, ap->a_ray.r_pt, hitp->hit_dist, ap->a_ray.r_dir);
VPRINT(“Hit Point”, pt);
¥

return 1; /* value returned by rt_shootray();

Using the RTUIF

 Makes shooting grids of rays easy.
e Uses the same command line interface as rt.

* Foundation for: rt, rtweight, rthide, and
other raytracing based applications.

* Simplest example shown 1n rt/viewdummy.c
In source tree

The 5 RTUIF Functions

view_1nit

view_setup

view_2init

view_pixel

view_end

RTUIF Routinesl1

int view_init(struct application *ap, char *file,
char *obj, 1nt minus_o);

Called by main() at the start of a run. Returns 1 if
framebuffer should be opened, else 0.

void view_setup(struct rt_1 *rtip);

Called by do_prep(), just before rt_prep() is called, in
“do.c”. This allows the lighting model to get set up for
this frame, e.g., generate lights, associate materials
routines, etc.

Void view_2init(struct application *ap);
Called at the beginning of a frame. Called by
do_frame() just before raytracing starts.

RTUIF Routines?2

int rayhit(struct application *ap, struct partition *PartHeadp);

Called via a_hit linkage from rt_shootray() when ray hits.

int raymiss(struct application *ap);

Called via a_miss linkage from rt_shootray() when ray
misses.

RTUIF Routines3

void view_pixel(struct application *ap);
Called by worker() after the end of proccessing for
each pixel.

void view_end(struct application *ap);

Called in do_frame() at the end of a frame, just
after raytracing completes.

So Much for the Trivialities

» Now we look at actual geometry

N\ 22/
)‘ \ \\. %%?\‘

7.~ Thinking About Geometry

e How to create it
e How to read it
* Doing anything useful with 1t

Geometric Representation

e BRL-CAD geometry has 3 forms:
— External (Disk/DB)

e Space efficient
e Network integers (Big-Endian)
* IEEE double-precision floating point (Big-Endian)

— Internal (Editing)
e Convenient parameter editing
e Host float/int representation
— Prep’ed (Raytrace)

e Fast ray/primitive intersection

On-Disk Representation

e Space Efficient
 Machine independent

— Only 1n new database format

* Database access 1s separate from object
retrieval.
— Database layer returns named objects.
e Does not understand content.
— Primitive objects get “Bag-o-Bytes” to turn into
In-memory “internal” representation.

* Have no knowledge of data origins

Internal Representation

* Convenient editing form

— Host format floating point and integers
 Must be “exported” to be written to disk

 Primitive shape data structures defined in
h/rtgeom.h

e Combination (and hence region) structure
defined 1n raytrace.h

Prep’ed Representation

 The form that 1s actually raytraced
e Created from internal form by rt_prep() call

e May not include internal form

— Saves memory

 May include additional fields

— Pre-computed values, additional data

% 7 Simple Database Appilcation

* Necessary headers

#include “conf.h”
#include <stdio.h>
#include "machine.h"
#include "vmath.h"
#include "raytrace.h"

#include "rtgeom.h”
#include “wdb.h”

Opening The Database

struct rt_wdb *wdbp;
struct db_1 *dbip = DBI_NULL;

/* open first, to avoid clobbering existing databases */

if ((dbip = db_open(argv[1], "r+w")) = DBI_NULL) {
/* build a wdbp structure for convenient read/write */
wdbp = wdb_dbopen(dbip, RT_WDB_TYPE_DB_DISK);

1f(db_dirbuild(dbip) < 0) {/* create directory database contents */
bu_log("Error building directory for %s\n", argv[1]); exit(-1);
}
}else {
/* 1t doesn’t exist, SO we create one */
bu_log("doing wdb_fopen()\n");
wdbp = wdb_fopen(argv[1]); /* force create */

Creating Geometry

e Note: All db units are in mm

— Set mk_conv2mm global for other units

point_t lo, hi;

/* add an axis-aligned ARB8 */

VSETALLC(o, 0.0);

VSETALLC(hi, 2.0);

if (mk_rpp(wdbp, "mybox", lo, hi)) /* see libwdb for APIs */
return -1;

/* add a sphere (really ellipse special case) */
if (mk_sph(wdbp, "myball", hi, 0.5)) /* see libwdb for APIs */
return -1;

Getting Geometry

e To retrieve geometry, we have to get an internal
representation

struct rt_db_internal ip;

RT_INIT_DB_INTERNAL(&ip);
cond = rt_db_lookup_internal(wdbp->dbip, "mybox", &dp, &ip,
LOOKUP_QUIET, &rt_uniresource);
If (cond) { bu_log(“couldn’t find %s\n”, “mybox”™); exit(0);}
if (ip.idb_major_type == DB5_MAJORTYPE_BRLCAD /* see db5.h */ &&
ip.idb_minor_type == ID_ARBS /* see raytrace.h */) {

struct rt_arb_internal *arb; /* see rtgeom.h */
arb = (struct rt_arb_internal *)ip.idb_ptr;
RT_ARB_CK_MAGIC(arb);
VPRINT(“First Point”, arb->pt[0]);

Primitive “Methods”™

e Retrieved geometry has specific set of
defined opertations/methods available

* See h/raytrace.h for description of

“struct rt_functab”

e Primitives should implement every method

— Some do not. See librt/table.c for specifics

Putting Geometry Back

* Database I/O layer converts from internal to
external format.

wdb_export(wdbp, "mybox", arb, ID_ARBS, mk_conv2mm);

Building Boolean Trees

Regions/combinations used to store boolean trees.

— Both are same type of database record
— old “GIFT” form detailed here

Simple boolean tree that contains
— Names of objects
— Boolean operations.

— Matrix transformations
Database record contains no actual geometry.

Example code taken from
— libwdb/wdb_example.c

Constructing Boolean List

e Build the list of elements first:

struct wmember wm_hd; /* defined in wdb.h */
BU_LIST_INIT(&wm_hd.l);

/* see h/wdb.h or libwdb/reg.c for API conv/* or proc-db/* for examples */
(void)mk_addmember("mybox", &wm_hd.l, NULL, WMOP_UNION);

/* If we wanted a transformation matrix for this element, we could have passed
* the matrix in to mk_addmember as an argument or we could add the following
* code:

memcpy(wm_hd->wm_mat, trans_matrix, sizeof(mat_t));

* Remember that values in the database are stored in millimeters, so the values

* 1n the matrix must take this into account.
*/

(void)mk_addmember(”myball",&wm_hd., NULL,WMOP_SUBTRACT);

Regions/Combinations

e Constructing the actual combination record

— Note: use mk_lcomb/mk_comb for inital creation only!

e caveat: can use to update boolean tree under special conditions

int is_region = 1;
VSET(rgb, 64, 180, 96); /* a nice green */

/* mk_lcomb is a macro using mk_comb.
* See libwdb/mk_comb() for full form */
mk_Icomb(wdbp,
"box_n_ball.r", /* Name of the db element created */
&wm_hd, /* list of elements & boolean operations */
is_region, /* Flag: This is a region */
"plastic", /* optical shader */
"di=.8 sp=.2", /* shader parameters */
rgb, /* item color */
0); /* inherit (override) flag */

Retrieving A Combination

e Simple retrieval only gets:
— List of elements
— Boolean operations
— Matrix transformations.

struct rt_comb_internal *comb; /* see raytrace.h */

rt_db_lookup_internal(wdbp->dbip, "box_n_ball.r", &dp, &ip,
LOOKUP_QUIET, &rt_uniresource);

if (ip.idb_major_type != DB5S_MAJORTYPE_BRLCAD /* see db5.h */ ||
ip.idb_minor_type !=ID_COMBINATION /* see raytrace.h */) {
bu_bomb("gack\n");

h

comb = (struct rt_comb_internal *)ip.idb_ptr;

RT_CK_COMB(comb);

Combination Write-Back

 Modity the boolean tree
 Write back out to db

/* Modify the combination we retrieved */
RT_GET_TREE(a, &rt_uniresource);
RT_GET_TREE(b, &rt_uniresource);

a->tr_l.tI_name = bu_strdup("newball");
a->tr_l.tl_op = OP_DB_LEAF;
a->tr_l.tI_mat = (matp_t)NULL;
a->tr_l.magic = RT_TREE_MAGIC,;

b->tr_b.magic = RT_TREE_MAGIC;
b->tr_b.tb_left = comb->tree;
b->tr_b.tb_right = a;

b->tr_b.tb_op = OP_UNION;

comb->tree = b;
wdb_export(wdbp, "box_n_ball.r", comb, ID_COMBINATION, 1.0);

Combination Tree Info

* Need to “prep” the tree to obtain geometry

— First, create “rt instance” struct rt_1i object

struct rt_i *rtip; /* see raytrace.h */

/* if we’ve been doing db I/0O */
rtip = rt_new_rti(wdbp->dbip);

/* if not already doing db I/O */
rtip=rt_dirbuild(filename, idbuf, sizeof(idbuf));

Processing combination tree

 Now to retrieve a treetop and prep:

rt_gettree(rtip, "box_n_ball.r");
rt_prep(rtip); /* now rtip has valid information */

e This could have been any level in the tree,
not just a region.

Accessing Prepped Regions

 rtip has list of regions
e Access as a linked list

e Example:getting bounding box of regions...

struct region *rp; /* see raytrace.h */

for (BU_LIST_FOR(rp, region, &rtip->HeadRegion)) {
point_t tree_min, tree_max;
VSETALL(tree_max, MAX_FASTF);
VREVERSE(tree_min, tree_max);
if (rt_bound_tree(rp->reg_treetop, tree_min, tree_max)) {
bu_bomb("choke\n");
}
VPRINT("tree_min", tree_min); /* VPRNIT is a macro from vmath.h*/
VPRINT("tree_max", tree_max);

7 ¥ Making Temporary Changes

* Changes that only last for 1 application run

e Changes do not reside 1n on-disk database

Dynamic Geometry

* Involves special “inmem” database
— Contains only modifications

— Akin to “union” filesystem of Unix

e Directory structure tracks whether current
version of object 1s on disk or 1in “inmem”
database

e Object retrieval gets most current version

 Writes to inmem arranged though special
wdb_dbopen() call

Accessing inmem database

e small difference in wdb_dbopen call

e all writes to this rt_wdb will go to “memory”
database only

struct rt_wdb *wdb_memp;
struct db_1 *dbip = DBI_NULL;

if ((dbip = db_open(argv[1], "r+w")) = DBI_NULL) {
/* The “INMEM?” specifies that changes are to be made
* ONLY in memory. Reads still come from disk for non-mem obj
*/
wdb_memp = wdb_dbopen(dbip, RT_WDB_TYPE_DB_INMEM);

if(db_dirbuild(dbip) < 0) {/* create database content directory */
bu_log("Error building directory for %s\n", argv[1]); exit(-1);
¥

Closing the Database

 Important to flush data and purge data
structures!

wdb_close(wdbp);

Thank you

Lee A. Butler
butler@arl.army.mil
410 278 9200

