Cl CLASSES AND SUPPORTING TYPES.........cooiiiriiciiiiieiieeiie st 1|

C.l CLASSES 11

C.1.1 ALFTDUIEBHANAIESELttt ettt sttt e s st et s tenanas C.1-1
C.1.2 AFIDUEHANAIEVAIUBPAITSEL ...ttt ettt ettt en s s en s C.1-3
C.1.3 EXCEPTION ..ttt eseseststetesesen s nesessesesessnnssessesssesssnsnsessessesssasassnsesnsssesasssnsnsesesees C.1-7
% FEARIAtEHANAIESEL ...ttt er ettt ettt eren e C.1-8
C.1.5 FATIME. ..ttt ettt ettt ettt e ettt et et et st et et et e e et st s st et et et et et et et eeeen st eeseeens C.1-9
Cl1.6 ParameterHaNAIEVAIUBPAITSEL...........ccooviveeieeseee e e ettt ettt s st ees st n s C.1-11
Cl1.7 REGION. ...t er st et eee s ts et sesesesesen et st st st sssesesesesesesesessssessssssssnsssnsesesasonsssessssans C.1-14
C . 2 SUPPORTING TYPES17
C.2.1 ENUMETALEA TYPES ...ttt es et sn et e s et essesesenesessnessssnsees C.2-1
C.2.2 FACIONY CIASSES ...t C.2-5
C.2.3 POUNT-DEfiINEA CONSTANTS........c.eviveeieeeiereeeteestees et e e st ste st see st st et et st een et steessesee s sesenenstseeenseaeas C.2-6
C.2.4 EVENTREIACHONHANGAIE ..ottt ettt ettt en e C.2-7
C.2.5 TYPEAETS ...ttt ettt e ettt e e sttt e e ettt e e ettt e e s ettt e e eab bt e e et ta e e s b be e e earbtaeesrrnas C.2-8

RTI 1.3-Next Generation

C.CLASSES AND SUPPORTING TYPES

RTI 1.3-Next Generation

Cl Classes

RTI 1.3-Next Generation

Classes

AttributeHandleSet

C.1.1 AttributeHandleSet

‘ The class destructor is implicitly invoked whenever an

RTI 1.3-NG

ABSTRACT
This class implements an unordered collection of unique attribute
handles. Instances of this class are typically accompanied by an
object-class handle or an object-instance handle to provide a
context for the attribute handles.

SYNOPSIS
#i ncl ude <RTI. hh>

class RTI::AttributeHandl eSet {
public:
virtual
~AttributeHandl eSet();

virtual RTI::ULong
size() const;

virtual RTI::AttributeHandl e
get Handl e(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual void
add(RTI:: Attribut eHandl e h)
throw (
RTI : : Arrayl ndexQut Of Bounds
RTI :: Attri but eNot Def i ned

)

virtual void
renmove(RTIl:: AttributeHandl e h)
throw (
RTI : : Attri but eNot Def i ned
)

virtual void
empty();

virtual RTI:: Bool ean
i sEmpty() const;

virtual RTI:: Bool ean
i sMenber (RTI: : AttributeHandl e h) const;
N

DESCRIPTION
This class implements an unordered collection of unique attribute
handles, i.e. a set. Such a set may be used in conjunction with an
object-class handle to denote a set of class-attributes (e.g., when
using declaration management services such as

publ i shQbj ect O ass()). A set may also be used in conjunction

with an object-instance identifier to denote a set of instance-
attributes (e.g., when using object management services such as

request Qbj ect At t ri but evVal ueUpdat e()). When used in the

later context, the handles in the set are assumed to refer to

attributes of the class by which the object is known to the federate.

An attribute-handle set exists independently of any object-class or
object-instance context. Any value in the range of attribute
handles (i.e., zero through MAX_ATTRIBUTES_PER_CLASS - 1)
may be included in a set. However, when a set is used as an
argument to an RTI service method, it is expected that the set will
only contain handles that are valid in the object-class or object-
instance context related to the service invocation.

Instances of this class may only be constructed using the
Attribut eHandl eSet Fact ory class. Instances should be
destroyed using the del et e operator when no longer needed.

METHODS
[~AttributeHandleSet()]

HLA-RTI 1.3-Next Generation

instance is destroyed using the del et e operator. The
destructor deallocates the memory associated with the class
instance.

add()

This method adds the specified attribute handle to the set. If
the handle is already present the method will continue to add
addition instances of the same handle to the set. Neither the
Arrayl ndexQut Of Bounds nor the AttributeNotDefined
exceptions are not thrown in the RT11.3-NG implementation.

Depending on the object-class context in which an attribute
handle set is used, not all attribute handles in this range may
be valid. Handles that are invalid for a particular object class
may be added to the set but will result in an exception when
the set is passed as an argument to an RTI service.

empty()
This method removes all attribute handles from the set.
getHandle()

This method treats the handle set as if it were an array
containing all the handles in the set sorted in ascending order.
The method returns the handle corresponding to offset i in the
array. Ifiis nota valid index into the array (i.e.,i<Oori >
size), the Ar r ayl ndexQut OF Bounds exception is thrown.

The intent of this method is to facilitate loops of the following
sort:
RTI :: ULong count = ahset. size();
for (RTI::ULong index = 0; index <
count; ++index) {
RTI::AttributeHandle h =
ahset . get Handl e(i ndex) ;
/'l some action based on h

}

The i sMenber () method may be used to test for the presence

of a particular handle without iterating through the entire set.
iISEmpty()

This method returns RT1::RTI_FALSE if the set contains at
least one attribute handle, otherwise RTI::RTI_TRUE.

isMember()

This method may be used to quickly test for the presence of a
particular handle in the set. It returns RTI::RTI_TRUE if the
set contains the specified handle, otherwise RTI::RTI_FALSE.
The caller should ensure that the argument is within the range
of valid attribute handles.

The get Handl e() method may be used to construct loops
iterating over all the handles in a set.

remove(),

This method removes the specified attribute handle from the
set. If the handle is not present, this results in a no-op. The
AttributeNotDefined exception is not thrown in the RTI1.3-
NG implementation.

size()

This method returns the count of attribute handles currently in
the set.

RTI 1.3-NG NOTES
RTI 1.3-NG makes At t ri but eHandl eSet an abstract class,

C.1l1

Classes AttributeHandleSet

meaning that instances may only be constructed using the

Attri but eHandl eSet Fact ory. Assigning values to instances
using the equal-sign operator or copy constructor will no longer
work. The set Uni on(), setIntersection(),and

renoveSet | nt er secti on() methods are no longer available, as
they relied on the copy constructor to return new instances. The
encodedLengt h(), encode(), and decode() methods and the
overloaded stream operators, intended for RTI internal use, are not
publicly available.

SEE ALSO
RTI::AttributeHandleValuePairSet
RTI::AttributeHandleSetFactory
RTI::RTlambassador::

getAttributeHandle()
getAttributeName()
getObjectClassHandle()

HLA-RTI 1.3-Next Generation
C.1-2

Classes

‘C.l.Z AttributeHandleValuePairSet

RTI 1.3-NG

ABSTRACT
This class implements an ordered collection of pairs containing an
attribute handle and an untyped value. Instances of this class are
typically accompanied by an object-instance handle to provide a
context for the attribute handles.

SYNOPSIS
#i ncl ude <RTI. hh>

class RTI:: AttributeHandl eVal uePai r Set {
public:
virtual
~Attri but eHandl eVal uePairSet();

virtual RTI::ULong
size() const;

virtual RTI::Handle
get Handl e(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI::ULong
get Val ueLengt h(RTI : : ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)i

virtual void

get Val ue(

RTI::ULong i,

char* buff,

RTI : : ULong& val uelLengt h
) const
throw (

RTI : : Arrayl ndexQut Of Bounds

)

virtual char *
get Val uePoi nt er (
RTI::ULong i,
RTI: : ULong& val uelLength
) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI::Transport Type
get Transport Type(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds,
RTI : : I nval i dHandl eVal uePai r Set Cont ext
)

virtual RTI:: O derType
get Order Type(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds,
RTI : : I nval i dHandl eVal uePai r Set Cont ext
)

virtual RTI:: Regi on*
get Regi on(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds,
RTI : : I nval i dHandl eVal uePai r Set Cont ext
)

virtual void

add(
RTI : : Handl e h,
const char* buf f,
RTI: : ULong val ueLengt h

HLA-RTI 1.3-Next Generation

AttributeHandleValuePairSet

throw (
Val ueLengt hExceeded,
Val ueCount Exceeded

)

virtual void
remove(RTI:: Handl e h)
throw (
Arrayl ndexCut O Bounds
)i

virtual void
moveFr om(
const AttributeHandl eVal uePair Set & ahvps,
RTI : : ULong& i

throw (
Val ueCount Exceeded,
Arrayl ndexCut Of Bounds
)

virtual void
empty () ;

virtual RTI::ULong
start() const;

virtual RTI::ULong
val i d(RTI::ULong i) const;

virtual RTI::ULong
next (RTI::ULong i) const;
DESCRIPTION
This class implements an ordered collection of handle-value pairs.
Instances of this class are used to convey federation data associated
with an object update. When used in such a fashion, the attribute
handles in the collection are assumed to refer to attributes of the
object class by which the object is known to the federate.

A handle-value pair collection exists independently of any object-
instance context. Any value in the range of attribute handles (i.e.,
zero through MAX_ATTRIBUTES_PER_CLASS - 1) may be
associated with values in a collection. However, when a collection
is used as an argument to an RTI service method, it is expected that
the collection will only contain associations for handles that are
valid in the object-instance context related to the service
invocation.

The RTI treats values associated with handles as opaque sequences
of bytes: the values are relayed from sender to receiver with no
conversion or interpretation. It is the responsibility of the
federation developer to ensure that federates have a common
understanding of the values being conveyed. In a non-
homogenous environment, endian-conversion and other data-
representation adjustments may be necessary.

Instances of this class may only be constructed using the
AttributeSet Factory class. Instances should be destroyed
using the del et e operator when no longer needed.

The ordering associated with pairs in the collection is unimportant
unless the same handle is associated with multiple values. In this
case, the r enove() method only removes the first pair
encountered that is associated with the specified attribute handle,
based on a sequential iteration through the collection. The federate
developer is discouraged from relying on the ordering associated
with pairs in a handle-value pair collection.

METHODS
[~AttributeHandleValuePairSet()]

The class destructor is implicitly invoked whenever an
instance is destroyed using the del et e operator. The
destructor deallocates the memory associated with the class

C.1-3

Classes

instance.

add()

This method inserts a new handle-value pair consisting of the
specified handle and caller-supplied buffer. A copy of the
buffer is stored in the collection; the caller is free to overwrite
the contents of the pointer at any time.

If the insertion would result in the number of pairs in the
collection exceeding the limit specified at its creation, the

Val ueCount Exceeded() exception is thrown. The

Val ueLengt hExceeded() exception may be thrown if not
enough resources are available to copy the caller-supplied
buffer. The RTI does not impose an arbitrary limit on the size
of values; they are limited only by system resources.

If this method is repeatedly invoked with the same attribute
handle, multiple pairs will be inserted, each associated with
the same attribute handle. Federate developers are
discouraged from exploiting this behavior.

empty()

This method removes all handle-value pairs from the
collection.

getHandle(),

This method treats the handle-value pair collection as an array
containing all pairs in the set in the order in which they were
inserted. The method returns the handle corresponding to
offset i in the array. If i is not a valid index into the array
(i.e.,i<0ori=>size), the Arrayl ndexQut Of Bounds
exception is thrown.

The intent of this method is to facilitate loops of the following
sort:

RTl : : ULong count = ahvpset. size();
for (RTI::ULong index = 0; index <
count; ++index) {
RTI::AttributeHandle h =
ahvpset . get Handl e(i ndex) ;
/1 sone action based on h

}

getOrderType()

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the ordering service category that
was used to send the set. (If the federate is not time-
constrained, all events will be considered receive-ordered
regardless of the ordering type associated with the set.)

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. RTI 1.3 does not deliver attributes with different
ordering policies in the same set, so this method will return
the same handle for any valid index in the set. Ifiisnota
valid index into the array (i.e., i <0 or i >size), the

Arrayl ndexQut Of Bounds exception is thrown.

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

I nval i dHandl eVal uePai r Set Cont ext exception.

getRegion(),

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the ordering service category that
was used to send the set.

This method treats the handle-value pair set as an array

HLA-RTI 1.3-Next Generation

C.1-4

AttributeHandleValuePairSet

containing all pairs in the set in the order in which they were
inserted. The RTI does not deliver attributes with different
regions in the same set, so this method will return the same
region for any valid index in the set. If i is nota valid index
into the array (i.e., i <0 or i >size), the

Arrayl ndexQut Of Bounds exception is thrown.

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

I nval i dHandl eVal uePai r Set Cont ext exception.

[getTransportType()|

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the transportation service
category that was used to send the set.

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The RTI does not deliver attributes with different
transportation policies in the same set, so this method will
return the same handle for any valid index in the set. Ifiis
not a valid index into the array (i.e., i <0 or i =>size), the
Arrayl ndexQut Of Bounds exception is thrown.

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

I nval i dHandl eVal uePai r Set Cont ext exception.

getValue()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method copies the value corresponding to offset
i in the array into the caller-supplied buffer, buff. The length
in bytes of the copied value is returned via the valueLength
out-parameter. If i is not a valid index into the array (i.e., i <
0 or i =size), the Arrayl ndexQut O Bounds exception is
thrown.

The get Val ue() method assumes that the caller-supplied
buffer is large enough to hold the value. The

get Val ueLengt h() method should be consulted prior to
invoking get Val ue() to ensure that the supplied buffer is
sufficiently large.

This method is intended to be used in conjunction with
get Handl e() to iterate through a set.

getValueLength(),

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method returns the handle corresponding to
offset i in the array. Ifiis not a valid index into the array
(i.e.,i<0ori=>size), the Arrayl ndexQut Of Bounds
exception is thrown.

This method should be called prior to invoking get Val ue()
in order to determine the size of the buffer that is required.

[getValuePointer()]

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. This method returns a pointer to the contents of the
value corresponding to offset i in the array. The length in
bytes of the returned value is returned via the valueLength
out-parameter. If i is not a valid index into the array (i.e., i <
0 or i =size), the Arrayl ndexQut O Bounds exception is

Classes

thrown.

This method is intended to be used in conjunction with
get Handl e() to iterate through a set.

If the caller intends to use the pointer returned by this method
to modify the contents of a value previously inserted into the
set, the new contents copied into the address must have the
same length as the original contents.

For instances that have been passed to the federate as an
argumenttotherefl ect Attri but eval ues() service, the
pointer returned by this method is only valid for the duration
of the callback. The federate must make a copy of this
memory if it requires the value to persist beyond the return
from the service invocation.

moveFrom()

This method transfers a handle-value pair from one set to
another without performing any memory copying. Given
handle-value pair sets to and from and an index i, this method
is a more efficient shorthand for the following:
RTI : : ULong si ze;
char* val ue;
RTI :: Attri but eHandl e handl e;
val ue = from get Val uePoi nter (i, size);
handl e = from get Handl e();
t 0. add(handl e, val ue, size);
fromrenove(handl e); // assum ng only one
i nstance of handl e
in the set

Note that this method modifies its first argument,
although it is declared const in the signature.

next()

This method returns the value of its argument plus one.

Thestart(),valid(),andnext() methods may be used
to iterate over all the pairs in a set as follows:
RTI:: ULong iter;
for (iter = ahvpset.start();
ahvpset.valid(iter);
ahvpset. next (i ter++))
/1 sone action based on index iter

remove()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. This method removes only the first pair associated
with attribute handle h from the array, based on a zero-based
sequential iteration. If h does not occur in the set, the
Arrayl ndexQut Of Bounds exception is thrown.

The last pair in the array (i.e., the most recently inserted item)
is moved into the hole vacated by the removed item.
size()

This method returns the count of attribute handle-value pairs
currently in the set. Multiple values associated with the same
handle each count towards the total size.

start()
This method returns zero if the set is non-empty and an
invalid attribute handle otherwise.

Thestart (), valid(),andnext () methods may be used
to iterate over all the pairs in a set as follows:

RTI:: ULong iter;
for (iter = ahvpset.start();

HLA-RTI 1.3-Next Generation

AttributeHandleValuePairSet

ahvpset.valid(iter);
ahvpset . next (iter++))
/1 some action based on index iter

valid()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method returns a non-zero value if its argument
i is avalid index in the array (i.e., i <0 or i =size), otherwise
the method returns zero.

Thestart(),valid(),andnext () methods may be used
to iterate over all the pairs in a set as follows:
RTI::ULong iter;
for (iter = ahvpset.start();
ahvpset.valid(iter);
ahvpset . next (iter++))
/1 some action based on index iter

RTI 1.0 MIGRATION NOTES
In RTI 1.0, attribute handle- and parameter handle-value pair sets
were interchangeable (they were t ypedef d to the same class.) In
RTI 1.3 this is no longer the case.

The get Val uePoi nt er () allows zero-copy access to values in a
handle-value pair collection. Where possible, use this method
instead of get Val ue() for more efficient data access.

RTI 1.0 limited values to a maximum size of 4096, as def i ne’d
by the MAX_BYTES_PER VALUE constant. There is no arbitrary
limit on the size of values in RTI 1.3. Consequently, it is
necessary to call the get Val ueLengt h() method before using
get Val ue() to ensure that the buffer supplied to get Val ue() is
sufficiently large. (Alternatively, use the get Val uePoi nt er ()
method instead.)

The get Tr ansport Type(), get Or der Type(), and
get Regi on() methods are new to RTI 1.3. They may be used by
the receiver of a reflection to obtain information about the event.

SEE ALSO
RTI::AttributeHandleSet
RTI::AttributeSetFactory
RTI::ParameterHandleValuePairSet
RTI::Region
RTI::RTlambassador
getAttributeHandle()

getAttributeName()
getObjectClassHandle()
getOrderingName()
getTransportationName()

RTI 1.3-NG

ABSTRACT
This class is the superclass of all the exceptions used by the RTI.
It contains data members used to communicate details of the
exception.

SYNOPSIS
class RTI:: Exception {

public:
RTI::ULong _serial;
char *_reason;
const char *_nane;

Exception (const char *reason);

C.1-5

Classes

Exception (
RTI :: ULong seri al,
const char *reason=NULL

)
Exception (const RTI::Exception &t oCopy);
virtual ~Exception();
Exception & operator = (const Exception &);

friend ostream& operator<< (
ostream &,
RTI : : Exception *
)
|
DESCRIPTION
The Except i on class is a simple class containing a few data
members and some convenience constructors and operators. It is
subclassed by the various RTI exception classes to allow different
exception handlers to be written for different types of errors.

DATA MEMBERS

HLA-RTI 1.3-Next Generation

C.1-6

AttributeHandleValuePairSet

Classes

C.13 Exception ‘ the class name of the specific subclass of

exception thrown

a textual description of the reason the exception was thrown
(or NULL)

_serial

a serial number uniquely identifying the place in the RTI code
where the exception originated; include this number when
reporting problems to technical support

METHODS
~Exception()

OPERATORS
|operator

The assignment operator reinitializes an instance based on the
value of another instance. A copy of the _reason string (if
present) is made for the instance being assigned to.

operator<<

The stream operator writes the class name, serial number, and
reason associated with the instance to the stream.

HLA-RTI 1.3-Next Generation

C.1-7

Exception

The class destructor is implicitly invoked whenever an
instance of the class is deallocated. The destructor deallocates
the memory associated with the instance.

[Exception (const char *)|

This constructor creates a new instance based on a string
reason (or NULL.) A new copy is made of the string
argument, if provided.

[Exception (const RTI::Exception &)

The copy constructor creates a new instance that is identical
to an existing instance. A copy of the _reason string (if
present) is made for the new instance.

Classes

C.1.4 FederateHandleSet

RTI 1.3-NG

ABSTRACT
This class represents an unordered collection of federate handles.

SYNOPSIS
#i nclude <RTI.hh>

class RTI:: Feder at eHandl eSet {
public:
virtual RTI::ULong
size() const;

virtual RTI:: FederateHandl e
get Handl e(RTI: : ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual void
add(RTI : : Feder at eHandl e h)
throw (
RTI : : Val ueCount Exceeded
)

virtual void
renove(RTI : : Feder at eHandl e h)
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual void
empty();
virtual RTI:: Bool ean
i sMenber (RTI : : Feder at eHandl e h) const;
b

DESCRIPTION
This class implements an unordered collection of federate handles.

FederateHandleSet

or i =size), the Arr ayl ndexQut Of Bounds exception is
thrown.

The intent of this method is to facilitate loops of the following
sort:

RTIl :: ULong count = fhset.size();
for (RTI::ULong index = 0; index <
count; ++index) {
RTIl : : FederateHandl e h =
f hset . get Handl e(i ndex) ;
/1l sone action based on h

}

The i sMenber () method may be used to test for the presence
of a particular handle without iterating through the entire set.

This method returns RTI::RTI_TRUE if any instances of the
specified handle are present in the collection, otherwise it
returns RTI::RTI_FALSE.

The get Handl e() method may be used to iterate over all
handles in the collection.

This method removes a single instance of the specified handle
from the collection. If the specified handle is not present at
all, the Arr ayl ndexQut Of Bounds exception is thrown.

This method should not be invoked while an iteration based
on get Handl e() is in progress.

This method returns the current count of handles in the set.
Multiple instances of the same handle count multiple times
towards this count.

Instances of this class are used to denote subsets an active SEE ALSO

federation. Such collections exist independently of the federate

RTI::FederateHandleSet

handles actually in use in a federation at a particular instant.
y P RTI 1.3-NG

However, when used as arguments to RTI services, they are
expected to only contain handles that are valid in the context of the
current active federation.

Federate handles of remote federates may be obtained by
subscribing to the Manager.Federate object class maintained by
the Management Object Model.

METHODS

This method adds the specified handle to the collection. The
value added need not correspond to a currently active federate
in the federation. Invoking this method multiple times with
the same argument will result in the same federate handle
appearing multiple times in the collection.

If adding a handle would result in the maximum collection
size specified during the creation of the instance being
exceeded, the Val ueCount Exceeded exception is thrown.

This method removes all handles currently in the collection.
getHandle

This method treats the handle set as if it were an array
containing all the handles in the set appearing in arbitrary
order. The method returns the handle corresponding to offset
i inthe array. Ifiis notavalid index into the array (i.e., i <0

HLA-RTI 1.3-Next Generation
C.1-8

Classes

C.1.5 FedTime

ABSTRACT
Instances of this class represent points on the federation logical
time axis.

SYNOPSIS
#i ncl ude <RTI. hh>

class RTI:: FedTinme {
public:
vi rtual
~FedTime();

virtual void
setZero();

virtual RTI:: Bool ean
isZero()

virtual void
set Epsilon()

virtual void
setPositivelnfinity();

virtual RTI:: Bool ean
isPositivelnfinity();

virtual RTI:: FedTi ne&
operator+= (const RTI:: FedTi ne&)
throw (
I nval i dFeder ati onTi ne
)

virtual RTI:: FedTi ne&
operator-= (const RTI:: FedTi ne&)
throw (
I nval i dFeder ati onTi e
)

virtual RTI:: Bool ean
operator<= (const RTI:: FedTi ne& const
throw (
I nval i dFeder ati onTi e
)

virtual RTI:: Bool ean
operator< (const RTI:: FedTi me& const
throw (
I nval i dFeder ati onTi ne
)

virtual RTI::Bool ean
operator>= (const RTI:: FedTi me& const
throw (
I nval i dFeder ati onTi ne
)

virtual RTI:: Bool ean
operator> (const RTI:: FedTi me& const
throw (
I nval i dFeder ati onTi e
)

virtual RTI:: Bool ean
operator== (const RTI:: FedTi ne& const
throw (
I nval i dFeder ati onTi e
)

virtual RTI:: FedTi ne&
operator= (const RTI:: FedTi ne&)
throw (
I nval i dFeder ati onTi ne
)

virtual int
encodedLength() const;

virtual void
encode(char *buff) const;

HLA-RTI 1.3-Next Generation

FedTime
virtual int
get Printabl eLength() const;

virtual void
get Printabl eString(char*);

-

DESCRIPTION

Instances of this class represent points on the federation logical
time axis. The methods of this class provide a means for setting an
instance equal to certain “special” points in the federation time
axis. The operators provide a means for adjusting or comparing
the axis point represented by an instance with that of a second
instance.

FedTi me instances representing arbitrary points on the federation
logical time axis may be constructed using the

FedTi meFact ory: : decode() method. The argument to this
method should be a character pointer (char *).

Conversely, the precise value associated with a FedTi me instance
may be queried using the encode() method. The argument to this
method should be a character pointer (char *) into which the value
associated with the instance will be marshaled.

METHODS

~FedTime

The destructor is implicitly invoked whenever an instance of
the class is deallocated. The destructor frees any resources
associated with the class instance.

encode]

This method marshals the FedTi me instance into a buffer
suitable for transmission over the network and subsequent
decoding using the FedTi meFact or y class. The marshaled
instance will occupy the number of bytes returned by the
encodedLengt h() method.

encodedLength

This method returns the length in bytes occupied by the
instance when marshaled using encode() .

[getPrintablel ength|

This method is not implemented,; it always returns zero.
getPrintableString

This method is not implemented,; it performs a no-op.

isPositivelnfinit

This method returns RTI::RTI_TRUE if the logical time
represented by the instance is positive infinity, otherwise it
returns RTI::RTI_FALSE. Positive infinity represents the
upper bound of the federation logical time axis. The
federation lower-bound time-stamp for a federation with no
time-regulating federates is equal to positive infinity.

This method returns RT1::RTI_TRUE if the logical time
represented by the instance is zero, otherwise it returns
RTI::RTI_FALSE. Zero represents the lower bound of the
federation logical time axis.

setEpsilon

This method sets the logical time represented by the instance
equal to epsilon, or 10°. Epsilon is the default value for

Classes

federate lookahead.

setPositivelnfinit

This method sets the logical time represented by the instance
equal to positive infinity. Positive infinity represents the
upper bound of the federation logical time axis.

setZero|

This method sets the logical time represented by the instance
equal to zero. Zero represents the lower bound of the
federation logical time axis.

OPERATORS
operator+3

This operator increments the logical time represented by the
instance based on the value of a second instance.

operator<

This operator evaluates to true if and only if the logical time
represented by the left-hand operand strictly precedes the
logical time represented by the right-hand operand.

operator<=

This operator evaluates to true if and only if the logical time
represented by the left-hand operand precedes or equals the
logical time represented by the right-hand operand..

operator=

This operator sets the logical time represented by the instance
based on the value of a second instance.

operator-=

This operator decrements the logical time represented by the
instance based on the value of a second instance.

operator==|

This operator evaluates to true if and only if the logical time
represented by the left-hand operand equals the logical time
represented by the right-hand operand..

operator>|

This operator evaluates to true if and only if the logical time
represented by the left-hand operand strictly follows the
logical time represented by the right-hand operand.

operator>=|

This operator evaluates to true if and only if the logical time
represented by the left-hand operand follows or equals the
logical time represented by the right-hand operand.

SEE ALSO
RTI::FedTimeFactory

HLA-RTI 1.3-Next Generation

C.1-10

FedTime

Classes

‘C.1.6 ParameterHandleValuePairSet

RTI 1.3-NG

ABSTRACT

This class implements an ordered collection of pairs containing a
parameter handle and an untyped value. Instances of this class are
typically accompanied by an interaction-class handle to provide a

context for the parameter handles.

SYNOPSIS
#i ncl ude <RTI. hh>

cl ass Par anet er Handl eVal uePai r Set {
public:
virtual
~Par anmet er Hand| eVal uePai r Set ()

virtual RTI::ULong
size() const;

virtual RTI::Handle
get Handl e(RTI:: ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI::ULong
get Val ueLengt h(RTI : : ULong i) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual void
get Val ue(
RTI :: ULong i,
char* buf f,
RTI : : ULong& val ueLengt h
) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual char *
get Val uePoi nt er (
RTI::ULong i,
RTI : : ULong& val ueLength
) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI::TransportType
get Transport Type() const
throw (
RTI: : I nval i dHandl eVal uePai r Set Cont ext
)

virtual RTI:: O derType
get Order Type() const
throw (
RTI : : I nval i dHandl eVal uePai r Set Cont ext
)

virtual RTI::Region *
get Regi on() const
throw (
RTI: : I nval i dHandl eVal uePai r Set Cont ext
)

virtual void

add(

RTI : : Handl e h,

const char* buf f,

RTI : : ULong val ueLengt h
throw (

RTI : : Val ueLengt hExceeded,
RTI : : Val ueCount Exceeded
)

virtual void

HLA-RTI 1.3-Next Generation

ParameterHandleValuePairSet

renove(RTI : : Handl e h)
throw (

RTI : : Arrayl ndexQut Of Bounds
)

virtual void
noveFr on(
const RTI:: Par anet er Handl eVal uePai r Set &
phvps,
RTI:: ULong& i

throw (
RTI : : Val ueCount Exceeded,
RTI : : Arrayl ndexQut Of Bounds
)
virtual void

empty();

virtual RTI::ULong
start() const;

virtual RTI::ULong
val i d(RTI::ULong i) const;

virtual RTI::ULong
next (RTI::ULong i) const;
b

SYNOPSIS

This class implements an ordered collection of handle-value pairs.
Instances of this class are used to convey federation data associated
with an interaction. When used in such a fashion, the parameter
handles in the collection are assumed to refer to parameters of the
class of the interaction being sent or reflected.

A handle-value pair collection exists independently of any
interaction-class context. Any value in the range of parameter
handles (i.e., zero through MAX_PARAMETERS_PER_CLASS - 1)
may be associated with values in a collection. However, when a
collection is used as an argument to an RTI service method, it is
expected that the collection will only contain associations for
handles that are valid in the interaction-class context related to the
service invocation.

The RTI treats values associated with handles as opaque sequences
of bytes: the values are relayed from sender to receiver with no
conversion or interpretation. It is the responsibility of the
federation developer to ensure that federates have a common
understanding of the values being conveyed. In a homogenous
environment, endian-conversion and other data-representation
adjustments may be necessary.

Instances of this class may only be constructed using the
Par anet er Set Fact ory class. Instances should be destroyed
using the del et e operator when no longer needed.

The ordering associated with pairs in the collection is unimportant
unless the same handle is associated with multiple values. In this
case, the r enove() method only removes the first pair
encountered that is associated with the specified parameter handle,
based on a sequential iteration through the collection. The federate
developer is discouraged from relying on the ordering associated
with pairs in a handle-value pair collection.

METHODS

[~ParameterHandleValuePairSet()

The class destructor is implicitly invoked whenever an
instance is destroyed using the del et e operator. The
destructor deallocates the memory associated with the class
instance.

add()

This method inserts a new handle-value pair consisting of the

Classes

specified handle and caller-supplied buffer. A copy of the
buffer is stored in the collection; the caller is free to overwrite
the contents of the pointer at any time.

If the insertion would result in the number of pairs in the
collection exceeding the limit specified at its creation, the

Val ueCount Exceeded() exception is thrown. The

Val ueLengt hExceeded() exception may be thrown if not
enough resources are available to copy the caller-supplied
buffer. The RTI does not impose an arbitrary limit on the size
of values; they are limited only by system resources.

If this method is repeatedly invoked with the same parameter
handle, multiple pairs will be inserted, each associated with
the same parameter handle. Federate developers are
discouraged from exploiting this behavior.

empty()

This method removes all handle-value pairs from the
collection.

getHandle(),

This method treats the handle-value pair collection as an array
containing all pairs in the set in the order in which they were
inserted. The method returns the handle corresponding to
offset i in the array. Ifi is not a valid index into the array
(i.e.,i<0ori=>size), the Arrayl ndexQut Of Bounds
exception is thrown.

The intent of this method is to facilitate loops of the following
sort:

RTI : : ULong count = phvpset.size();
for (RTI::ULong index = 0; index <
count; ++index) {
RTI : : Paranet erHandl e h =
phvpset . get Handl e(i ndex);
/1 sone action based on h

}

getOrderType()

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the ordering service category that
was used to send the set. (If the federate is not time-
constrained, all events will be considered receive-ordered
regardless of the ordering type associated with the set.)

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

I nval i dHandl eVal uePai r Set Cont ext exception.

getRegion(),

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the ordering service category that
was used to send the set.

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

I nval i dHandl eVal uePai r Set Cont ext exception.

[getTransportType()]

This method may be used by the receiver of a handle-value
pair set to obtain a handle to the transportation service
category that was used to send the set.

This method is only valid for sets that represent incoming
events. An attempt to invoke this method on a set that was
created by the local federate will result in an

HLA-RTI 1.3-Next Generation

C.1-12

ParameterHandleValuePairSet

I nval i dHandl eVal uePai r Set Cont ext exception.

getValue()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method copies the value corresponding to offset
i in the array into the caller-supplied buffer, buff. The length
in bytes of the copied value is returned via the valueLength
out-parameter. If i is not a valid index into the array (i.e., i <
0 or i =size), the Arrayl ndexQut O Bounds exception is
thrown.

The get Val ue() method assumes that the caller-supplied
buffer is large enough to hold the value. The

get Val ueLengt h() method should be consulted prior to
invoking get Val ue() to ensure that the supplied buffer is
sufficiently large.

This method is intended to be used in conjunction with
get Handl e() to iterate through a set.

getValuelLength(),

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method returns the handle corresponding to
offset i in the array. Ifiis not a valid index into the array
(i.e.,i<0ori=size), the Arrayl ndexQut Of Bounds
exception is thrown.

This method should be called prior to invoking get Val ue()
in order to determine the size of the buffer that is required.

[getValuePointer()]

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. This method returns a pointer to the contents of the
value corresponding to offset i in the array. The length in
bytes of the returned value is returned via the valueLength
out-parameter. If i is not a valid index into the array (i.e., i <
0 or i =size), the Arr ayl ndexQut OF Bounds exception is
thrown.

This method is intended to be used in conjunction with
get Handl e() to iterate through a set.

If the caller intends to use the pointer returned by this method
to modify the contents of a value previously inserted into the
set, the new contents copied into the address must have the
same length as the original contents.

For instances that have been passed to the federate as an
argument to the r ecei vel nt er acti on() service, the
pointer returned by this method is only valid for the duration
of the callback. The federate must make a copy of this
memory if it requires the value to persist beyond the return
from the service invocation.

moveFrom()

This method transfers a handle-value pair from one set to
another without performing any memory copying. Given
handle-value pair sets to and from and an index i, this method
is a more efficient shorthand for the following:

RTI:: ULong si ze;

char* val ue;

RTI : : Par armet er Handl e handl e;

val ue = from get Val uePoi nter (i, size);

handl e = from get Handl e() ;

to. add(handl e, val ue, size);

Classes

fromrenove(handl e); // assum ng only one
i nstance of handl e
in the set

Note that this method modifies its first argument,
although it is declared const in the signature.

next()

This method returns the value of its argument plus one.

Thestart (), valid(),andnext () methods may be used
to iterate over all the pairs in a set as follows:

RTI:: ULong iter;
for (iter = phvpset.start();
phvpset.valid(iter);
phvpset. next(iter))
/1 sone action based on index iter

remove()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. This method removes only the first pair associated
with parameter handle h from the array, based on a zero-based
sequential iteration. If h does not occur in the set, the

Arrayl ndexQut Of Bounds exception is thrown.

The last pair in the array (i.e., the most recently inserted item)
is moved into the hole vacated by the removed item.

size()

This method returns the count of parameter handle-value pairs
currently in the set. Multiple values associated with the same
handle each count towards the total size.

start()

This method returns zero if the set is non-empty and an
invalid parameter handle otherwise.

Thestart (), valid(),andnext () methods may be used
to iterate over all the pairs in a set as follows:

RTl::ULong iter;
for (iter = phvpset.start();
phvpset.valid(iter);
phvpset. next(iter))
/1 sone action based on index iter

valid()

This method treats the handle-value pair set as an array
containing all pairs in the set in the order in which they were
inserted. The method returns a non-zero value if its argument
i is avalid index in the array (i.e., i <0 or i =>size), otherwise
the method returns zero.

Thestart(),valid(),andnext() methods may be used
to iterate over all the pairs in a set as follows:

RTl::ULong iter;
for (iter = phvpset.start();
phvpset.valid(iter);
phvpset.next(iter))
/1 sonme action based on index iter

SEE ALSO
RTI::ParameterSetFactory
RTI::AttributeHandleValuePairSet
RTI::Region
RTI::RTlambassador

getInteractionClassHandle()
getOrderingName()
getParameterHandle()

HLA-RTI 1.3-Next Generation

C.1-13

getParameterName()
getTransportationName()

ParameterHandleValuePairSet

Classes

C.1.7 Region

RTI 1.3-NG

ABSTRACT
An instance of this class represents a subspace of a federation
routing space. The subspace is defined by the union of one or

Region

I

DESCRIPTION

more extents, each of which is characterized by a lower and upper

bound in every dimension.

SYNOPSIS
#i ncl ude <RTI. hh>

class RTI::Region {

public:
vi rtual
~Regi on();
virtual RTI::ULong

get RangeLower Bound(
RTI : : Ext ent | ndex theExtent,
RTI : : Di mensi onHandl e t heDi mensi on
) const
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI::ULong

get RangeUpper Bound(
RTI : : Ext ent | ndex t heExt ent,
RTI : : Di nensi onHandl e t heDi nensi on

) const

throw (
RTI : : Arrayl ndexQut Of Bounds

)

virtual void
set RangeLower Bound(
RTI : : Ext ent | ndex t heExt ent,
RTI : : Di mensi onHandl e t heDi nensi on,
RTI: : ULong t heLower Bound
)
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual void
set RangeUpper Bound(
RTI : : Ext ent | ndex theExt ent,
RTI : : Di mensi onHandl e t heDi nensi on,
RTI: : ULong t heUpper Bound
)
throw (
RTI : : Arrayl ndexQut Of Bounds
)

virtual RTI:: SpaceHandl e
get SpaceHandl e() const
throw ();

virtual RTI::ULong
get Number Of Ext ent s() const
throw ();

virtual RTI::ULong

get RangeLower BoundNot i fi cati onLi m t(
RTI : : Ext ent | ndex theExtent,
RTI : : Di mensi onHandl e t heDi nensi on

) const

throw (
RTI : : Arrayl ndexQut Of Bounds

)

virtual RTI::ULong

get RangeUpper BoundNot i fi cati onLi m t(
RTI : : Ext ent | ndex theExt ent,
RTI : : Di nensi onHandl e t heDi nensi on

) const

throw (
RTI : : Arrayl ndexQut Of Bounds

)

HLA-RTI 1.3-Next Generation

C.1-14

A region instance represents a subspace of the routing space with
which it was associated upon instantiation. This subspace is
defined by the union of all extents comprising the region. Each
extent is characterized by a lower bound and an upper bound in
each dimension of the routing space. For an n-dimensional routing
space, a single extent consists of a vector of pairs of real numbers

(Lo, W), (Li, U), ..., (Lnz, Usd)
such that for all i in the range [0, n- 1],
M N_EXTENT < L; < U < MAX_EXTENT

A given point in the routing space,
(Po, P1, ..., Pna)

is contained in the extent if and only if for all i in the range [0, n-
1],

Li <P < U

L; is called the lower bound of the extent in dimensioni. U is
called the upper bound of the extent in dimension i.

A point is contained in a region if and only if there exists an extent
of the region such that the point is contained in the extent.

Two regions of the same routing space are said to intersect if and
only if there exists a point that is contained in both regions.

Each region has an implicit notification subspace that is derived
from the region’s extents and from the routing space configuration
specified in the RID file. When a region is used for subscription,
filtering of events delivered to the federate is based on the region’s
notification subspace. As such, the notification subspace includes
the entire subspace defined by the extents of the region. It may
include additional points in the routing space that are deemed
close enough” to the subspace defined by the extents to be
considered relevant.

What constitutes “close enough” is a function of the thresholds
defined in the RID file. Each dimension in a routing space has a
threshold in the range [0, 1] that denotes a percentage of the
entire distance spanned by the dimension axis (i.e., MAX_ENTENT
— M N_EXTENT). For purposes of computing a notification
subspace, both bounds of a dimension are expanded by the
threshold amount for that dimension. For an extent over n
dimensions characterized by the vector

(Lo, W), (Li, U), ..., (Lnz, Usd)

and thresholds To, Ty, ..., Ta-1, the derived notification subspace is
characterized by

(Lo=To* C W+ To* O,

(L1 =Te*C U+ T * QO

(Ln,1 - an]_ * Cy Un—l + Tn—l * C)
where C is the constant given by MAX_EXTENT — M N_EXTENT.

The notification subspace of a region is the union of the
notification subspaces of its constituent extents. When the region
is used for subscription, an event of the subscribed type is
considered relevant to the federate if the notification subspace
intersects the region associated with the event by the sender.

Changes made to a Regi on instance will not take effect until the
instance is the subject of a

not i f yAbout Regi onMbdi fi cation() service invocation. A
newly created Regi on instance spans the entire routing space in all
extents (i.e., all upper bounds are equal to MAX_EXTENT and all
lower bounds are equal to M N_EXTENT). The federate should
make the desired modifications to the region’s extents and

Classes

recommit the region instance using

not i f yAbout Regi onModi fi cati on(). Ifany subsequent
changes are made to the instance, this service should again be used
to inform the RTI of the new extents.

The methods of the Regi on class do not enforce correctness of the
region instance. That is, ranges may be specified such that the
bounds are not valid extent values or such that the lower bound is
greater than the upper bound. Such semantic errors are permitted
by the Regi on object itself but will result in an exception when an
incorrect instance is used as an argument to an RTI service
method.

EXAMPLE
As an example, consider a routing space consisting of two
dimensions, x and y. The complete routing space can be thought of
as a box in two dimensions characterized by the points

e (M N_EXTENT, M N_EXTENT) [lower left]
* (M N_EXTENT, MAX_EXTENT) [upper left]
* (MAX_EXTENT, M N_EXTENT) [lower right]
e (MAX_EXTENT, MAX_EXTENT) [upper right]

Consider a Regi on instance consisting of three extents associated
with the routing space. Each extent is itself a two-dimensional box
characterized by the points

* (Lge, Lye) [lower left]
* (Leer Ue) [upper left]
* (Ue, Lye) [lower right]

* (Ue, Ue) [upper right]

L and U denote lower or upper bound, x and y denote the two
dimensions in the space, and e denotes the extent number within
the region object. The subspace represented by this particular
region is the union of the three boxes defined by the three extents.

Each extent in the region has an associated “notification box” that
is at least as big as the box defined by the extent’s ranges. The
notification box associated with an extent is characterized by the
four points

. (Lxe - Tx, Lye
* (Lxe - To Ue
e (Ue + Ty, Lye - Ty) [lower right]
o (Ue + Ty, Ue + Ty) [upper right]

T represents the threshold distance for a given dimension, such that
Tg = Py * (MAX_EXTENT — M N_EXTENT)

Ty) [lower left]

+

Ty) [upper left]

P denotes the real number in the range [0, 1] that is defined as the
threshold percentage for a particular dimension by the RID file.

The union of the three notification boxes defines the subspace that
is considered relevant when the region instance is used for
subscription.

Note that the coordinate grids associated with routing spaces need
not correspond to geographical locations (although this is certainly
a popular application.) The semantics of dimensions and ranges
are entirely defined by the federation. Creative use of routing
spaces can be used to implement data filtering and partitioning
based on radio frequencies, event priorities, or almost any other
criteria.

METHODS

HLA-RTI 1.3-Next Generation
C.1-15

Region

The destructor is implicitly invoked whenever an instance of
the class is deallocated. The destructor frees any resources
associated with the class instance.

[getNumberOfExtents]

This method returns the number of extents used to describe
the region, as bound to the instance during its creation.

[getRangeL owerBound]

This method queries the lower bound in the specified
dimension of the subspace described by the specified extent.

If the specified extent is not valid for the region instance (i.e.,
theExtent < 0 or theExtent >getNumberOfExtents()) or if the
specified dimension is not valid in the context of the region’s
routing space, the Arr ayl ndexQut Of Bounds exception is
thrown.

[getRangel owerBoundNotificationLimit]

This method queries the lower bound in the specified
dimension of the subspace within which incoming events are
considered “relevant” based on the current ranges comprising
the specified extent.

An incoming event is considered relevant to a federate if the
region associated with the event intersects any one of the
subspaces defined by the notification limits of any extents of
any subscribed region.

The notification limits associated with a region instance are
based on the most recent version of the instance committed to
the RTI using not i fi yAbout Regi onModi fi cation().
Changes made to extents of an instance after the most recent
invocation of this service will not be reflected in the
notification limits.

[getRangeUpperBound|

This method queries the upper bound in the specified
dimension of the subspace descibed by the specified extent.

If the specified extent is not valid for the region instance (i.e.,
theExtent < 0 or theExtent >getNumberOfExtents()) or if the
specified dimension is not valid in the context of the region’s
routing space, the Ar r ayl ndexQut Of Bounds exception is
thrown.

[getRangeUpperBoundNotificationLimit

This method queries the upper bound in the specified
dimension of the subspace within which incoming events are
considered “relevant” based on the current ranges comprising
the specified extent.

An incoming event is considered relevant to a federate if the
region associated with the event intersects any one of the
subspaces defined by the notification limits of any extents of
any subscribed region.

The notification limits associated with a region instance are
based on the most recent version of the instance committed to
the RTI using not i fi yAbout Regi onModi fi cati on().
Changes made to extents of an instance subsequent to the
most recent invocation of this service will not be reflected in
the notification limits.

getSpaceHandle]

Classes

This method returns a handle to the routing space of which
the region is a subset, as bound to the instance during its
creation.

[setRangeLowerBound]

This method sets the lower bound in the specified dimension
of the subspace described by the specified extent. The value
of the lower bound should be no less than M N_EXTENT and
no greater than the upper bound of the specified dimension for
the specified extent.

If the specified extent is not valid for the region instance (i.e.,
theExtent < 0 or theExtent >getNumberOfExtents()) or if the
specified dimension is not valid in the context of the region’s
routing space, the Arr ayl ndexQut Of Bounds exception is
thrown.

[setRangeUpperBound]

This method sets the upper bound in the specified dimension
of the subspace described by the specified extent. The value
of the upper bound should be no greater than MAX_EXTENT
and no less than the lower bound of the specified dimension
for the specified extent.

If the specified extent is not valid for the region instance (i.e.,
theExtent < 0 or theExtent >getNumberOfExtents()) or if the
specified dimension is not valid in the context of the region’s
routing space, the Ar r ayl ndexQut Of Bounds exception is
thrown.

SEE ALSO
Pound-Defined Constants

RTI:

MAX_EXTENT
MIN_EXTENT

:RTlambassador

createRegion()

deleteRegion()
getDimensionHandle()
getDimensionName()
getSpaceHandle()
getSpaceName()
notifyAboutRegionModification()

HLA-RTI 1.3-Next Generation

C.1-16

Region

Supporting Types Region

C2 Supporting Types

Supporting Types

C.2.1 Enumerated Types

Enumerated Types

RTI 1.3-NG

ABSTRACT
The RTI defines several enumerated types. Enumerated values are
all-upper-case, with underscores used to separate words.

RTI::BOOLEAN
To support C++ compilers that do not have a built-in bool
primitive, the RTI defines its own Boolean type.

RTI_TRUE

This value represents a positive (true) condition.
RTI_FALSE

This value represents a negative (false) condition.

RTI::FederateStateType
This enumeration is used by the Management Object Model to
communicate the state of a federate or federation.

RESTORING

The federate or federation is in the process of restoring.
RUNNING

The federate or federation is in the normal state.
SAVING

The federate or federation is in the process of saving.

RTI::ObjectState
This enumeration is used by the Management Object Model to
communicate the status of an object instance for an LRC.

DELETED

The object instance is in the LRC’s database, but it is marked
for deletion.

[HOLDING TOKENS|

The object is not known to the federate, but one or more
attribute-instance ownership tokens for the instance are being
managed by the local LRC.

[KNOWN TO FEDERATE]

The object is known to the federate. Some attribute-instance
ownership tokens for the instance may or may not be owned
by the federate or managed by the local LRC.

RTI::ResignAction
This enumeration is used to instruct the
Resi gnFeder at i onExecut i on() service as to how locally
owned attribute-instances should be resolved.

[DELETE_OBJECTS|

Any objects for which the federate holds the privilege to
delete will be deleted. Any other attribute-instances owned
by the federate will be lost to the federation.

[DELETE OBJECTS AND RELEASE ATTRIBUTES]

The LRC first deletes any objects for which the federate holds
the privilege to delete, then unconditionally divests ownership
of any remaining attribute-instances owned by the federate.

HLA-RTI 1.3-Next Generation

[NO_ACTION|

No action is taken. All attribute-instances owned by the
federate will be lost to the federation.

[RELEASE_ATTRIBUTES]

All attribute-instances owned by the federate are
unconditionally divested, including any instances of the
special “privilege to delete” attribute.

RTI::TimeManagerStateType
This enumeration is used by the Management Object Model to
communicate whether or not a federate is advancing time at a
given instant.

IDLE

There is not currently a time-advancement service in progress
for the federate.

[TIME_ADVANCING]

There is a time-advancement service in progress for the
federate.

RTI 1.0 MIGRATION NOTES

e The Order Type and Tr anspor t Type enumeration’s no longer
exist in RTI 1.3; see the get Transport at i onHandl e() and
get Orderi ngHandl e() services.

e The Oaner shi pDi vesti t ureCondi ti on enumeration no longer
exists; there are now two separate services corresponding to the
two values of this enumeration.

. (bj ect Renmoval Reason no longer exists; the federate is not
informed of the reason an object is being removed.

e TokenSt at e no longer exists; this information is no longer made
available to the federation.

« Many values have been eliminated from the Feder at eSt at eType
enumeration; pause/resume no longer exists and save/restore-
pending is no longer meaningful under the 1.3 save/restore
mechanism.

» FederationSt at eType no longer exists; pause/restore has been
replaced by synchronization points.

« TineManager St at eType has been reduced to only two
enumerated valued.

C.1.1 EXCEPTIONS

RTI 1.3-NG

ABSTRACT
Exceptions are the mechanism used by the RTI to communicate the
fact that a method or service has failed to complete successfully.

DESCRIPTION
A number of different types of exceptions are thrown by the RTI;
each type is represented as a separate C++ class to facilitate the use
of different exception handlers to catch different kinds of
exceptions. See the section on the Except i on class for the
structure of the thrown exceptions. This section presents a brief
general description of each type of exception; for notes on the use
of an exception in the context of a particular method or service, see
the section on the method or service.

C.z2-1

Supporting Types

EXCEPTIONS THROWN ONLY BY THE RTI
[ArrayIndexOutOfBounds|

An invalid argument was provided to a method of one of the
RTI utility data-structure classes.

[AsynchronousDeliveryAlreadyDisabled]

An attempt to disable asynchronous delivery of receive-
ordered events was made when asynchronous delivery was
already disabled.

[AsynchronousDeliveryAlreadyEnabled]

An attempt to enable asynchronous delivery of receive-
ordered events was made when asynchronous delivery was
already enabled.

[AttributeAlreadyBeingAcquired]

A request was made to acquire an attribute-instance for which
the local federate already had an outstanding acquisition
request.

[AttributeAlreadyBeingDivested]

A request was made to divest an attribute-instance for which
the local federate already had an outstanding divestiture
request.

[AttributeNotDefined]

An attribute handle was used that was invalid in the specified
object-class or object-instance context.

[ConcurrentAccessAttempted|

An attempt was made to invoke a non-reentrant service while
an invocation of a non-reentrant service is still in progress;
this occurs when RTI ambassador services are invoked from
federate ambassador callbacks or from multiple threads
simultaneously.

[CouldNotOpenFED]

The user provided FED file was not found in the specified
location.

[DeletePrivilegeNotHeld]

An attempt was made to delete an object for which the local
federate does not own the privilegeToDelete attribute-
instance.

[DimensionNotDefined]

The specified name was not a dimension of the specified
routing space.

| EnableTimeConstrainedPending}

An attempt was made to enable time constraint or advance
time while a request to enable time constraint was still in
progress.

[EnableTimeRegulationPending|

An attempt was made to enable time regulation or advance
time while a request to enable time regulation was still in
progress.

ErrorReadingFED

A file was found in the specified FED file location, but it was
not in the correct format.

HLA-RTI 1.3-Next Generation

C.2-2

Enumerated Types

[FederateAlreadyExecutionMember]

An attempt was made to join a federation execution when the
RTI ambassador was already associated with a federation.

[Federatel oggingServiceCalls|

This exception is not thrown.

[FederateNotExecutionMember]

A service invocation that is only valid in the context of a
federation was made when the RT1 ambassador was not
associated with any federation.

[FederatesCurrentlyJoined]

An attempt was made to destroy a federation execution to
which there are still joined federates.

[FederateWasNotAsked ToReleaseAttribute]

The federate attempted to respond to an attribute-instance
release request when no release request was outstanding for
the attribute-instance.

[FederationExecutionAlreadyExists|

An attempt was made to create a federation execution that
already existed.

[FederationExecutionDoesNotExist]

An attempt was made to join a federation execution that did
not exist.

[FederationTimeAlreadyPassed|

An attempt was made to schedule a save or advance federate
logical time to a logical time that was in the federation’s past.

[HandleValuePairMaximumExceeded]

This exception is not thrown by RTI 1.3.

[InteractionClassNotDefined]

An invalid interaction-class handle was used as an argument
to a service invocation.

[InteractionClassNotSubscribed]

A service or callback was invoked that expected its subject to
be an interaction class that was not currently subscribed by
the local federate, but the interaction class was currently
subscribed by the federate.

[InteractionParameterNotDefined|

A parameter handle was used that was invalid in specified
interaction-class context.

InvalidExtents|

The extents associated with a region instance were invalid, i.e.
a lower bound was greater than an upper bound, or an extent
boundary was outside the range defined by

[M N_EXTENT, MAX_EXTENT] .

[InvalidHandleValuePairSetContexi]

A method of a pair set that is only valid for pair-sets created
by the LRC to communicate an update or interaction to the
federate was invoked on a set that was not an argument to a
reflection or receipt.

Supporting Types

InvalidLookahead

An attempt was made to turn regulation on or modify the
federate’s lookahead was made with an invalid logical time
argument.

[InvalidOrderingHandle]

An ordering handle was not recognized as being a valid
handle as returned by get Or der i ngHandl e() .

[InvalidRegionContexi]

An attempt was made to delete a region that was still
associated with attribute-instances.

[InvalidResignAction]

A resign-action argument was not recognized as being a valid
enumerated value of the Resi gnAct i on type.

[InvalidRetractionHandle]

An attempt was made to retract an event that was not sent by
the local federate, or no longer in the history buffer of the
local LRC.

[InvalidTransportationHandle]

An ordering handle was not recognized as being a valid
handle as returned by get Tr ansport ati onHandl e() .

[MemoryExhausted|

Insufficient memory was available to fulfill an allocation
request.

NameNotFound

The specified symbolic (string) name was not valid in the
context used.

[ObjectAlreadyRegistered]

An attempt was made to register an object instance with a
symbolic (string) name that was not unique to the federation
at that point.

[ObjectClassNotDefined]

An invalid object-class handle was used.
[ObjectClassNotSubscribed]

A service or callback was invoked that expected its subject to
be an object class that was currently subscribed by the local
federate, but the class was not subscribed by the local
federate.

RegionNotKnown

A service was invoked with a Regi on object that was not
recognized as a valid instance as created by the get Regi on()
service.

RestorelnProgress|

A service invocation that is not allowed during a restoration
was made while a federation restoration was in progress.

[RestoreNotRequested]

The federate reported a completed restoration attempt when it
had not been asked to restore.

RTlinternalErro

HLA-RTI 1.3-Next Generation

Enumerated Types

An error internal to the RTI occurred; consult the federate’s
log file for details.

SavelnProgress|

A service invocation that is not allowed during a save was
made while a federation save was in progress.

SaveNotlnitiated

The federate reported a completed save attempt when it had
not been asked to save.

SpaceNotDefined

An invalid space handle was used as an argument to an RTI
service.

[SynchronizationPointLabelWasNotAnnounced]

The federate reported the achievement of a synchronization
point for while there was not an outstanding synchronization
request.

[TimeAdvanceAlreadyInProgress|

An invocation of a time-advancement service before the
previous time-advancement service had culminated in a time-
advance grant.

[TimeConstrainedAlreadyEnabled]

The federate attempted to enable time constraint when time
constraint was already enabled.

[TimeConstrainedWasNotEnabled]

The federate attempted to disable time constraint when time
constraint was already disabled.

[TimeRegulationAlreadyEnabled]

The federate attempted to enable time regulation when time
regulation was already enabled.

[TimeRegulationWasNotEnabled|

The federate attempted to disable time regulation when time
regulation was already disabled.

[ValueCountExceeded]

An attempt was made to allocate a set with greater capacity
than is allowed, or an attempt to insert an item into a set
would result in its capacity being exceeded.

[ValueLengthExceeded]

Insufficient memory was available to fulfill a request to add
an attribute or parameter value to a handle-value pair set.

EXCEPTIONS THROWN BY THE RTI OR THE
FEDERATE

[AttributeAlreadyOwned]

A service or callback was invoked that expected its subject to
be an attribute-instance that is not currently owned by the
local federate, but the local federate does currently own the
attribute-instance.

[AttributeAcquisitionWasNotRequested]

A service or callback was invoked that expected its subject to
be an attribute-instance for which an acquisition request was

outstanding, but there was no outstanding acquisition request
by the local federate.

C.2-3

Supporting Types

[AttributeDivestitureWasNotRequested]

A service or callback was invoked that expected its subject to
be an attribute-instance for which a divestiture request was
outstanding, but there was no outstanding divestiture request
by the local federate.

[AttributeNotOwned]

A service or callback was invoked that expected its subject to
be an attribute-instance that is currently owned by the local
federate, but the local federate does not currently own the
attribute-instance.

[AttributeNotPublished]

A service or callback was invoked that expected its subject to
be an class-attribute that the local federate is currently
publishing, but the federate is not currently publishing the
attribute.

[FederateOwnsAttributes|

A service or callback was invoked that expected its subject to
be an attribute-instance that is not currently owned by the
local federate, but the local federate does currently own the
attribute-instance.

[InteractionClassNotPublished]

A service or callback was invoked that expected its subject to
be an interaction class that was currently published by the
local federate, but the interaction class was not currently
published by the federate.

[InvalidFederationTime]

A logical time argument to a service or callback was not a
valid point on the federation logical time axis.

[ObjectClassNotPublished]

A service or callback was invoked that expected its subject to
be an object class that was currently published by the local
federate, but the class was not published by the local federate.

ObjectNotKnown

An object instance handle was used as an argument to a
service or callback that did not correspond to an object
instance known to the LRC or the federate, respectively.

[SpecifiedSavel abelDoesNotExist|

The federate was asked to restore to a save label that did not
correspond to a saved federate state. (This exception is not
thrown by the RTI ambassador.)

EXCEPTIONS THROWN ONLY BY THE FEDERATE
[AttributeAcquisitionWasNotCanceled]

A callback to confirm the cancellation of an attribute
acquisition was made for an attribute-instance that was not the
subject of a previous acquisition cancellation.

[AttributeNotKnown]|

An attribute handle was used that was invalid in the specified
object-class or object-instance context.

[CouldNotDiscover]

The federate failed to discover an object for some reason
other than an unrecognized object-class handle.

HLA-RTI 1.3-Next Generation
C.2-4

Enumerated Types

CouldNotRestore

This exception should not be thrown by the federate; use
f eder at eRest or eNot Conpl et e() instead.

| EnableTimeConstrainedWasNotPending]

The federate received a callback advising it that time
constraint had been enabled, but it had not requested time
constraint to be enabled.

| EnableTimeRegulationWasNotPending]

The federate received a callback advising it that time
constraint had been enabled, but it had not requested time
constraint to be enabled.

EventNotKnown

A request was made to retract an event that was not known to
the federate.

[FederatelnternalError]

An error internal to the federate prevented it from
successfully processing a federate ambassador callback.

[InteractionClassNotKnown|

An invalid interaction-class handle was used as an argument
to a service invocation.

[InteractionParameterNotKnown]

A parameter handle was used that was invalid in specified
interaction-class context.

[ObjectClassNotKnown]

An invalid object-class handle was used as an argument to a
service or callback.

[TimeAdvanceWasNotInProgress|

The federate was informed of a time-advance grant when
there was not any time-advancement service in progress.

[UnableToPerformSave]

This exception should not be thrown by the federate; use
f eder at eSaveNot Conpl et e() instead.

Supporting Types

C.2.2 Factory Classes

RTI 1.3-NG

ABSTRACT
Many RTI utility classes are abstract and cannot be directly
instantiated. Factories are simple classes, typically consisting of a
single static method, which are used to create instances of utility
classes.

SYNOPSIS
#i ncl ude <RTI. hh>

class RTI::AttributeSetFactory {
public:
static
RTI : : Attri but eHandl eVal uePai r Set *
create(RTl::ULong count)
throw (
RTI : : Menor yExhaust ed,
RTI : : Val ueCount Exceeded

b

class RTI::AttributeHandl eSet Factory {
public:
static
RTI: : Attri but eHandl eSet *
create(RTI:: ULong count)
t hr ow(
RTI : : Menor yExhaust ed,
RTI : : Val ueCount Exceeded

b

cl ass RTI:: Feder at eHandl eSet Factory {
public:
static
RTI : : Feder at eHandl eSet *
create(RTI:: ULong count)
throw (
RTI : : Menor yExhaust ed,
RTI : : Val ueCount Exceeded

}

class RTI:: ParaneterSet Factory {
public:
static
RTI : : Par anmet er Handl eVal uePai r Set *
create(RTl::ULong count)
throw (
RTI : : Menor yExhaust ed,
RTI : : Val ueCount Exceeded,
RTI : : Handl eVal uePai r Maxi nunExceeded

b

class RTI:: FedTi meFactory {
public:
static
RTI : : FedTi me*
makeZero()
throw (
Menor yExhaust ed
)

static
RTI : : FedTi me*
decode(const char *buf)
throw (
RTI : : Menor yExhaust ed
)

}
DESCRIPTIONS

All factories throw the Menmor yExhaust ed exception if there is
not sufficient memory to fulfill the allocation request.

[AttributeHandleSetFactory]

HLA-RTI 1.3-Next Generation

C.2-5

Factory Classes

The creat e() method returns a pointer to a newly allocated
At tribut eHandl eSet instance. The count argument is not
used; all sets may contain any and all handles from 0 to
MAX_ATTRIBUTES_PER_CLASS — 1. The new set is
initially empty.

The Val ueCount Exceeded exception is not thrown.

[AttributeSetFactory]

The creat e() method returns a pointer to a newly allocated
Attri but eHandl eval uePai r Set instance. The count
argument specifies a limit on the number of handle-value
pairs that may be inserted into the set. The new set initially
contains no handle-value pairs.

The Val ueCount Exceeded exception is thrown if the
specified limit is greater than the
MAX_ATTRI BUTES_PER_CLASS constant.

[FederateHandleSetFactory]

The creat e() method returns a pointer to a newly allocated
Feder at eHandl eSet instance. The count argument
specifies a limit on the number of handles that may be
inserted into the set. The new set is initially empty.

The Val ueCount Exceeded exception is thrown if the
specified limit is greater than the

MAX_ATTRI BUTES_PER_CLASS constant. (It should only ever
be necessary to have MAX_FEDERATE handles in the set.)

FedTimeFactor

The makeZer o() method returns a pointer to a new FedTi me
instance initialized to logical time zero (the lower bound on
the federation logical time axis.)

The decode() method returns a pointer to a new FedTi me
instance initialized to an arbitrary value. The buf argument
should be a pointer to a non-negative C++ char * with which
to initialize the new instance.

[ParameterSetFactory]

The creat e() method returns a pointer to a newly allocated
Par amet er Handl eVal uePai r Set instance. The count
argument specifies a limit on the number of handle-value
pairs that may be inserted into the set. The new set initially
contains no handle-value pairs.

The Val ueCount Exceeded exception is thrown if the
specified limit is greater than the
MAX_PARAMETERS_PER_CLASS constant.

Supporting Types Pound-Defined Constants

‘ C.2.3 Pound-Defined Constants

RTI 1.3-NG

ABSTRACT
Pound-defined constants are used for RTI parameters that are not configurable via the RID file. By convention, pound-defined constants are all
upper-case with underscores separating the words.

Identifier Type Value Description
MAX_FEDERATION unsigned 32 the maximum number of simultaneous federations
short supported
MAX_FEDERATE unsigned 32 the maximum number of federates per federation
short supported
MAX_NAME_LENGTH size_t 64 the maximum length of federation and federate
names (including null-terminator)
MAX_SPACES unsigned 10 the maximum number of spaces per federation
short (including the default space) supported
MAX_OBJECT_CLASSES unsigned 200 the maximum number of object classes allowed in
short the FED (including MOM and internal RTI classes)
MAX_INTERACTION_CLASSES unsigned 200 the maximum number of interaction classes allowed
short in the FED (including MOM and internal RTI
classes)
MAX_ATTRIBUTES_PER_CLASS unsigned 200 the maximum number of attributes allowed for an
short object class (includes attributes inherited from
superclasses)
MAX_PARAMETERS_PER_CLASS unsigned 200 the maximum number of parameters allowed for an
short interaction class (includes parameters inherited from
superclasses)
MAX_DIMENSIONS_PER_SPACE unsigned 10 the maximum number of dimensions allowed for a
short single routing space
DEFAULT_SPACE_NAME string “defaultSpace” the name of the default routing space implicitly

defined for all federations (note: space names are
case-insensitive)

RTI_VERSION string “1.3R11” string identifier representing the version of the RTI
software
MAX_EXTENT unsigned 0xc0000000 the upper bound of the range of values associated
long with a single dimension of a routing space
MIN_EXTENT unsigned 0x40000000 the lower bound of the range of values associated
long with a single dimension of a routing space

HLA-RTI 1.3-Next Generation
C.2-6

Supporting Types

C.2.4 EventRetractionHandle

RTI 1.3-NG

ABSTRACT
Event-retraction handles uniquely identify time-stamped events
in the federation.

SYNOPSIS
#i ncl ude <RTI. hh>

struct EventRetractionHandl e_s {
RTI : : Uni quel D t heSeri al Nunber ;
RTI : : Feder at eHandl e sendi ngFeder at €;
b

typedef struct EventRetractionHandl e_s
Event Ret r act i onHandl e;

DESCRIPTION
Event-retraction handles uniquely identify time-stamped events
in the federation. They are used by the RTI for purposes of
retracting events using the ret ract () and
request Retraction() services. They may also be used by
the federation in any circumstances where time-stamped events
need to be referred to individually.

Note that the association of a time-stamp (and hence a retraction
handle) with an event does not imply that the event is sent or
delivered in time-stamp order.

MEMBERS

the federate handle of the federate that produced the event;
such handles are guaranteed to be unique at any particular
instant in the federation but not necessarily over the entire
lifetime of the federation

theSerialNumbe

the sequence number of the event relative to other events
generated by the same federate; the sequence number is
incremented by one for each event sent by the federate and
will therefore be unique to the federate (subject to the
limitations of the integer representation)

SEE ALSO
RTI::RTlambassador::
retract()
RTI::FederateAmbassador::
requestRetraction()

HLA-RTI 1.3-Next Generation

C.2-7

EventRetractionHandle

Supporting Types

| C.25 TYPEdefs

RTI 1.3-NG

ABSTRACT

Typedefs

The RTI uses typedefs to create descriptive aliases for primitive C++ types. The C++ primitive name may be used interchangeably with
typedef’d names; however, using the descriptive names may make code more readable

Old Type New Type Structure Usage
unsigned short RTI::UShort 2-byte integer in range [0,65535] platform-independent reference to 2-
byte unsigned integer
short RTI::Short 2-byte integer in range platform-independent reference to 2-
a [-32768,32767] byte signed integer
unsigned longH RTI::ULong 4-byte integer in range platform-independent reference to 4-
- [0,4294967295] byte unsigned integer
longH RTI::Long 4-byte integer in range platform-independent reference to 4-
[-2147483648,2147483647] byte signed integer
double RTI::Double 8-byte floating point in range platform-independent reference to 8-
[—l.7976931348623157E+30% byte floating point number
1.7976931348623157E+308]
float RTI::Float 4-byte floating point in range platform-independent reference to 4-

[—3.402823466E+3%
3.402823466E+38]

byte floating point number

RTI::FederateAmbassador*

RTI::FederateAmbassadorPtr

4-byte address of

RTI : : Feder at eAnbassadorEI

shorthand for pointer

RTI::Long RTI::SpaceHandle 4-byte integer in range used to refer to RTI-assigned values
[-2147483648,2147483647] representing federation routing spaces
RTI:: ULong RTI::ObjectClassHandle 4-byte integer in range used to refer to RTI-assigned values
[0,4294967295] representing federation object classes
RTI::ULong RTI::InteractionClassHandle 4-byte integer in range used to refer to RTI-assigned values
[0,4294967295] representing federation interaction
classes
RTI::ULong RTI::ExtentIndex 4-byte integer in range used to refer to extents comprising a
[0,4294967295] Regi on instance
RTI::ULong RTI::Handle 4-byte integer in range shorthandle for Handl e
[0,4294967295]
RTI::Handle RTI::AttributeHandle 4-byte integer in range used to refer to RTI-assigned values
[0,4294967295] representing object-class attributes
RTI::Handle RTI::ParameterHandle 4-byte integer in range used to refer to RTI-assigned values
[0,4294967295] representing interaction-class
parameters
RTI::Handle RTI::ObjectHandle 4-byte integer in range used to refer to RTI-assigned object
[0,4294967295] instances in the federation
RTI::Handle RTI::DimensionHandle 4-byte integer in range used to refer to RTI-defined values
[0,4294967295] representing dimensions of a
federation routing space
RTI::ULong RTI::FederateHandle 4-byte integer in range used to refer to RTI-defined values
[0,4294967295] representing active federates
RTI::Handle RTI::TransportationHandle 4-byte integer in range used to refer to RTI-defined values
[0,4294967295] representing categories of

transportation service

RTI::TransportationHandle

RTI:: TransportType

4-byte integer in range
[0,4294967295]

used to refer to RTI-defined values
representing categories of
transportation service

RTI::Handle

RTI::OrderingHandle

4-byte integer in range
[0,4294967295]

used to refer to RTI-defined values
representing categories of ordering
service

RTI::OrderingHandle

RTI::OrderType

4-byte integer in range
[0,4294967295]

used to refer to RTI-defined values
representing categories of ordering
service

RTI::ULong RTI::FederatelD 4-byte integer in range not used in RTI 1.3
[0,4294967295]

RTI::ULong RTI::UniquelD 4-byte integer in range used to refer to unique serial numbers
[0,4294967295] used to retract time-stamped events

! On platforms with 8-byte longs, this will be an i nt to keep the number of bytes consistent across platforms.

2 The values listed are for the Sparc Solaris platform. Other platforms may differ.

% On some platforms, an address may be 8 bytes.

HLA-RTI 1.3-Next Generation

C.2-8

Supporting Error! Style not defined.Types Typedefs

Old Type New Type Structure Usage
RTI::Double RTI::TickTime 8-byte floating point in range used to refer to the amount of time to
[-1.7976931348623157E+30%| spend in tick (in seconds)
1.7976931348623157E+308]
RTI::ULong RTI::RegionToken 4-byte integer in range used to refer to Regi on instance
[0,4294967295] serial numbers used for marshaling

HLA-RTI 1.3-Next Generation
C.2-9

	C.	CLASSES AND SUPPORTING TYPES	II
	Classes
	AttributeHandleSet
	Exception
	FederateHandleSet
	Region

	Supporting Types
	EXCEPTIONS

